
Department of MSc. I.T. Project Report
Computer 2002
Science

Mobile Software
Development for
an Open Source
E-Learning
Platform

Author
Erlina Cut-Hennies

Supervisor
Dr. Alan Pearmain

Report: 30 August 2002

Mobile Software Development for an Open Source E-Learning Platform

2

Disclaimer

Name: Erlina Cut-Hennies

Title: “Mobile Software Development for an Open Source E-Learning Platform”

This report is submitted as part requirement for the degree of MSc in Information
Technology at the University of London. It is the product of my own labour except
where indicated in the text. The report may be freely copied and distributed provided
the source is acknowledged.

Mobile Software Development for an Open Source E-Learning Platform

3

Acknowledgement

I would like to express my gratitude to my supervisor Dr. Alan Pearmain for his advice
and guidance during the project. Also, I would like to thank Lofi Dewanto for testing
this program on the OpenUSS server and his advice on the program. Thank you to my
husband and my family for their love and support. And last but not least, I would like to
thank all the people who supported me.

Mobile Software Development for an Open Source E-Learning Platform

4

Abstract

This project adds a Wireless Application Protocol (WAP) presentation interface to the
Open University Support System (OpenUSS), which can be categorised as a Learning
Management System. This supports mobile access to teaching information in a
university. The objective of this project is to design a mobile access that provides
OpenUSS users with information retrieval via mobile devices from the universities that
use OpenUSS system.

OpenUSS was implemented purely in Java using Java2 Enterprise Edition (J2EE).
Business processes within the learning and teaching domain are implemented with
server-side components Enterprise JavaBeans (EJB). As an EJB-container, the Open
Source product JOnAS is used. To provide the mobile access in accordance with Java
technology, Wireless Markup Language (WML) and Java to produce servlets are
applied for the implementation. A servlets container named Enhydra, which is also
Open Source is utilised to enable a dynamic WAP-page.

Presentation technologies other than WAP such as i-mode, Java2MicroEdition (J2ME),
as well as the existing bearer services of WAP such as Circuit-Switched Data
Transmission Services, 2.5 G (General Package Radio Service), and 3 G (Universal
Mobile Telephone System) are examined briefly.

Testing the implementation is done using a development kit that includes a WAP
simulator and WAP gateway simulation. Using local installation, the WAP-Browser is
able to retrieve the same information as on the OpenUSS-Webapplication. All the
problems during the course of testing and their solution are illustrated deeply. An
evaluation of the system demonstrated that clients of university’s systems of OpenUSS
use it successfully. Once the system is open and integrated on the web, many
universities that already use the system of OpenUSS will benefit from this project.

Mobile Software Development for an Open Source E-Learning Platform

5

TABLE OF CONTENTS

0 Introduction ... 6

1 Open Source Software and Open University Support System............................... 6

1.1 Open Source Software ... 6

1.2 Open University Support System.. 8
1.2.1 OpenUSS as an Open Source Learning Management System......................... 8
1.2.2 Technical Background of OpenUSS... 11

2 Wireless Application Protocol and Wireless Markup Language......................... 12

2.1 Introduction to Wireless Application Protocol ... 12

2.2 Security in the Wireless Application Protocol .. 15

2.3 The Wireless Markup Language... 15

2.4 WAP as an Independent Protocol and the Bearer Services................................. 16
2.4.1 Short Message Service... 17
2.4.2 Circuit-Switched Data Transmission Services.. 17
2.4.3 General Packet Radio Service .. 17
2.4.4 Universal Mobile Telephone System.. 18

2.5 Presentation Techniques: i-mode versus WAP ... 19

3 Java 2 Micro Edition, Java 2 Enterprise Edition and the Products 20

3.1 Java2MicroEdition (J2ME) ... 20

3.2 JavaTM 2 Platform, Enterprise Edition Specification .. 22

3.3 Enterprise JavaBeans .. 23

3.4 The Products of J2EE and the OpenUSS Architecture.. 24

4 OpenUSS-WAP Software Development.. 31

4.1 Requirement Analysis and Use Cases... 31

4.2 Activity Diagram ... 32

4.3 Class Diagrams ... 34

4.4 Design and Implementation ... 37

4.5 Testing and Evaluation .. 45

5 Future Development .. 47

6 Conclusion.. 47

Bibliography ... 48

Mobile Software Development for an Open Source E-Learning Platform

6

0 Introduction

Nowadays, high quality teaching needs a modern infrastructure to establish an efficient
teaching and learning process. To improve the presence of university foundations based
on the Internet, a software package named OpenUSS (Open University Support System)
was developed as an Open Source platform to support e learning for universities.

OpenUSS is an existing open source e-learning platform for students and university
staff. It provides a motivation for developers all over the world to use and expand the
source code. OpenUSS currently only supports HTML browser access. Thus, I had the
idea and motivation to design and implement a mobile access solution for OpenUSS
using WAP/WML. This will enable OpenUSS subscribers to send and retrieve
information whilst on the move, by means of mobile handsets. Chapter 1 will provide
more details about Open Source and OpenUSS.

Today’s technology of mobile devices should be able to retrieve such information using
the wireless application protocol. Chapter 2 illustrates the wireless protocol and the
existing mobile technology such as CSD (circuit-switched data), GPRS (General Packet
Radio Service), and future technologies such as UMTS (Universal Mobile Telephone
System) as bearer services in order to access the WAP/WML interface of OpenUSS.

This project deals with the implementation of WAP as an extension to the OpenUSS
system using WML and Java. In addition, current technologies such as i-mode and
Java2MicroEdition (J2ME) are evaluated. Chapter 2 and 3 represent the features of
those technologies as well as the advantages, the limitations and the reason why WAP is
preferred for this project. Moreover, the software development of OpenUSS using the
technology of Java2 Enterprise Edition (J2EE) is explained.

A software engineering approach using methodology such as Unified Modelling
Languages (UML) is used as a discipline when software is designed and built. Chapter 4
deals with the development process, the problems and their solution, and the evaluation
of the software.

1 Open Source Software and Open University Support System

1.1 Open Source Software

Generally, there are two types of software, namely free software and proprietary
software. As opposed to proprietary software, free software does not forbid duplicates,
changes, and expansion. The basic idea behind the open source is simply: When
programmers can read, redistribute, and modify the source code for a piece of software,
the software evolves through improvement, adaptation, and fixing bugs1.

Richard Stallman is the initiator of open source as free software when he formed the
Free Software Foundation and its GNU Project. GNU is a recursive acronym for
“GNU's Not Unix”; it is pronounced "guh-NEW"2. The Open Source definition was a
policy document of the Debian GNU/Linux Distribution. Debian is an early Linux
system that was built entirely of free software and is still popular today. The definition
of free or non-free software was written by Bruce Perens and documented as “The

1 http://www.opensource.org
2 http://www.gnu.org

Mobile Software Development for an Open Source E-Learning Platform

7

Debian’s Free Software Guidelines”, which is refined into the “Open Source
Definition”.

The Open Source definition lists certain rights that a software licence must be granted in
order to be Open Source. Therefore, there are licence models of open source software,
which have the aim to protect the software owner from any liability related with the
program since the source code is usually available at no charge. The licence models of
open source software are as follows3:

• The GNU General Public License (GPL) versus the Lesser General Public
License (LGPL)

Anyone can change the source code but the GPL does not allow people to make
modifications privately. It means that the modifications made must be distributed under
the GPL. Thus, it is likely that the author of a GPL-ed program receives improvements
from others, who modify their software for their own purposes.

The GPL doesn't allow the incorporation of a GPL-ed program into a proprietary
program. The GPL's definition of a proprietary program is any program with a license
that does not hold as many rights as the GPL. This is not the case with LGPL, which
allows for integration with almost any kind of software, including proprietary software.

An example of a GPL/LGPL case is the Linux-Kernel user interface Kool Desktop
Environment (KDE). The authors distributed their programs with Trolltech’s product
names Qt before an Open Source license was placed on Qt. However, this right does not
extend to any third parties that redistribute the program - they must follow all of the
terms of the license, even the ones that the copyright holder violates, and thus it was
problematic to redistribute a GPL-ed program containing Qt. The KDE developers
solved this problem by applying the LGPL, rather than the GPL, to their software.

• The BSD (Berkeley System Distribution) and X License

The BSD license is different from the GPL and LGPL. Anyone can change the source
code and the modification made must not be given as an open source. However, this
license requires programmers to mention in a footnote that the software was developed
at the University of California any time a feature of a BSD-licensed program in
advertising is mentioned.

In contrast, X-licenced modification can be made privately. In addition, one can sell the
binary versions of the program without distributing the modified source code, and
without applying the X license to those modifications. This is still Open Source,
however, as the Open Source Definition does not require that modifications always
carry the original license. As opposed to BSD, the X license must not to be applied to
those modifications and one does not have to make provision for advertising.

• The Netscape Public License (NPL) and the Mozilla Public License (MPL)

Netscape developed the Netscape Public License (NPL) when the product Netscape
Navigator Open Source was made. In fact, the Open-Source version is called Mozilla
and Netscape reserves the trademark Navigator. To address this concern, Netscape
created Mozilla Public License (MPL). The MPL is much like the NPL, but does not
contain the clause that allows Netscape to re-license any modifications. Like X licence,
NPL and MPL allow people to make modifications privately.

3 http://www.perens.com/Articles/OSD.html

Mobile Software Development for an Open Source E-Learning Platform

8

Table 1 shows an overview of the licence models of open source software and their
condition:

License

Can be mixed
with

non-free
software

Modifications can be taken privately and not

returned to you

Can be

re-licensed

by anyone

Contains special

privileges for the

original copyright holder over

your modifications

GPL no No no no

LGPL yes No no no

BSD yes Yes no no

NPL yes Yes no yes

MPL yes Yes no no

Table 1

1.2 Open University Support System

Open University Support System (OpenUSS) is an Open Source e-learning platform for
students and university staff. The Open Source licence models of OpenUSS are GNU
General Public Licenced (GPL) and Lesser General Public License (LGPL) for its
components. OpenUSS was developed in the year 2000/2001 and is supported by
CampusSource, an Opensource-Initiative of the Ministry for Education, Science, and
Research in Germany. CampusSource should act as an information system centre
(portal) that supports a further development of virtual e-learning in universities and
schools.

The initiator of OpenUSS is Prof. Dr. Lothar Grob, the head of the Institute of Business
Informatics and Controlling at the University of Muenster in Germany. Lofi Dewanto,
who is carrying out his research at that institute, is the Developer of OpenUSS.
OpenUSS has become increasingly popular and is already used by many universities in
the world, such as the University of Muenster, the University of Cologne in Germany,
Ansted University in Malaysia and Perbanas University in Indonesia.

OpenUSS provides modern application services of information and communication
based on the Internet, such as managing personal learning, event-related email
distribution, a discussion forum specified by subjects, chat rooms, and an archive
system for lecture materials to support offline learning. Students are provided with
tailor-made information, by which they can subscribe to all the faculties and subjects
they are registered for in a semester. Lecturers or university staff can organise lecture
materials and save them in a database so that the information for both the past and
present time can always be provided. New lecture material can be published via upload
and download directly from the lecturer’s desktop. All that is required is Internet access
and a standard browser. With this basic configuration, any forms of lecture materials
such as slides, text documents and spreadsheets can be published and distributed
swiftly. At the end of a semester, all information is archived automatically.

1.2.1 OpenUSS as an Open Source Learning Management System

As an Open Source product, other developers can take advantage of the existing code
and use, modify or develop further. Currently, OpenUSS only supports HTML browser

Mobile Software Development for an Open Source E-Learning Platform

9

access. The bottom line of success of computer supported universities, however, is
mobility. Therefore there is a need to support communication technologies such as the
Wireless Application Protocol. In this way, students and university staff can retrieve
information irrespective of their location and from computers at universities, at home,
or via mobile devices.

WAP is already used by many universities in the United Kingdom, such as the
University of Southampton4, University of Middlesex, and Bath Spa University
College5. The aims of the services range from access to the university‘s library
catalogue to alumni service.

The mission of OpenUSS is to establish a standard Open University Support System
Application Programming Interface (API)-System that can be used for all universities
and faculties6. The portal should be a communication centre for all members of the
organisation.

The OpenUSS concept is based on the ASP (Application Service Provider) model,
which means that one or more organisations such as universities, schools, communities
and companies can be handled within one instance/installation. In this way, OpenUSS
gives users the flexibility to use their chosen devices – the so-called multi-channel
information delivery – to access the instance7. Figure 1 shows the concept behind
OpenUSS:

Figure 1

The components of OpenUSS are divided into two parts: foundation component and
extension component layer. The components of the foundation layer are essential within
OpenUSS. They represent domain-oriented components such as8:

• Student. This component cover all properties and activities of a student such as
name and e-mail address.

• Assistant. Component such as lecturers, assistants, and secretaries who are specified
by name and title.

• Administrator. He or she who manage the system of OpenUSS, such as creating a
faculty or institute and allocating rights for accessing the system.

4 http://www.mech.soton.ac.uk/edmc/In_The_Media/in_the_media.html
5 http://www.cs.waikato.ac.nz/~mattj/wap.htm
6Developer’s Manual OpenUSS
7 http://www.openuss.sourceforge.net
8 Developer’s Manual OpenUSS

Mobile Software Development for an Open Source E-Learning Platform

10

• Faculty. This component deals with the faculties in a university.

• Semester. A component that assigns the season for each faculty. This could be
winter and summer semesters for example.

• Subject. This component covers the subject within the faculty in the given semester.

• Security. Component that deals with the login for assistants and students.

All the functionality of OpenUSS is implemented as Extension Components. The
components in this layer are9:

• Lecture. That is the component that deals with publishing the lecture materials by
the lecturer so that the registered students can download them easily.

• Exercise. This component should enable student to download the exercises and
assistant to upload, correct the exercises, and submit the marks for them.

• Mailing list. Component for students.

• Discussion as well as chat component. While the chat component is synchronous,
discussion is asynchronous.

• Archives. This component produces an archive for example for each semester.

• Virtual assistant. Component that helps students to organise their timetable. It also
enables assistants to write personalised comments of student’s performance.

• Data Warehouse and Data Mining. This component produces statistical data for
assistants and can be used as a system report.

The separation of both the layers should make it easier to develop more functions for
the system. Figure 2 shows the architecture of OpenUSS components:

9 Developer’s Manual OpenUSS

Mobile Software Development for an Open Source E-Learning Platform

11

archives
 component

data warehouse
and data mining

 component

virtual assistant
component

chat component
discussion
 component

mailing list
component

lecture
component

edutainment
component

exercise
component

student
 component

administrator
component

assistant
 component

faculty
component

subject
component

semester
 component

security
component

Database Application Server

Java2 Enterprise Edition

Operating System

Extension
Components

Foundation
Components

Figure 2

1.2.2 Technical Background of OpenUSS

OpenUSS is a fully-fledged Java-Application based on Enterprise JavaBeans (EJB) and
it uses an Application-Server-Technology to enable the processing of a huge
application. OpenUSS is built based on the Multi Tier Architecture of Java2 Enterprise
Edition (J2EE), which is separated into Presentation Layer, Business Process Layer and
Data Layer. These layers are the most important part of OpenUSS technical design. The
Presentation Layer is implemented with a Servlet API, which is only HTML at present.
The Business Process Layer is designed and implemented with Enterprise JavaBeans
(EJB). Any database system, which supports Java Database Connection (JDBC) can be
used to cover the Data Layer of OpenUSS10.

Figure 3 illustrates the technology used by OpenUSS.

10 http://www.openuss.sourceforge.net

Mobile Software Development for an Open Source E-Learning Platform

12

Figure 3

This project deals only with the presentation layer for mobile access of the OpenUSS.
The details of J2EE and the development of the presentation layer using WML and Java
servlets are shown in Chapter 3 and 4. Before going into the details, a background of
current mobile technologies including bearer services as well as the presentation
techniques will be illustrated.

2 Wireless Application Protocol and Wireless Markup Language

2.1 Introduction to Wireless Application Protocol

Wireless Application Protocol (WAP) is the de facto standard for wireless computing
managed by a consortium of vendors called WAP Forum. The purpose of WAP is to
enable easy, fast delivery of relevant information and services to mobile users despite
restrictions such as small screens and limited keyboards. WAP is a collection of
protocols and standards that enable browser type applications to run in constrained
devices over low bandwidth/high latency networks. The complete protocol stack of
WAP can be seen in the table below11:

Abbreviation Name Description

WAE Wireless Application Environment is an application layer, which
includes the micro-browser on the device, WML (the Wireless
Markup Language), WMLScript (a client-side scripting
language), telephony services, and a set of formats for commonly
used data such as images.

WSP Wireless Session Protocol is a session layer, providing HTTP 1.1
functionality, with basic session state management, and a facility
for reliable and unreliable data push and pull.

11 Forta et al, 2000

Mobile Software Development for an Open Source E-Learning Platform

13

WTP Wireless Transaction Protocol is a transaction layer that provides
transport services (one way and two way), and related
technologies.

WTLS Wireless Transport Layer Security is a security layer, providing
data security, privacy, and authentication, as well as protection
against denial-of-service attacks

WDP Wireless Datagram Protocol as a general transport layer.

WAP content can be served by installing a WAP server. This is a software that behaves
like an HTTP server and can be run on the same machine. As can be seen in Figure 4
below, the WAP device makes a request to the WAP server that returns the requested
data to the device for processing.

Figure 4

Wireless Session Protocol (WSP) specification defines the WSP push operation and a
WSP push Protocol Data Unit (PDU). A push operation is not specified for the HTTP
protocol. It is used by the WAP proxy server (often called WAP gateway) to
communicate with content hosts. To support pushes, the server has to provide an
application interface to allow server based applications to generate a push to a mobile
client. The support of pushes on the client side depends on the capabilities of the
handsets to handle pushed content. The Nokia OTA configuration proposal to the WAP
Forum describes the use of a connectionless push over the SMS bearer, to transfer the
configuration data to the handset12.

WAP devices can request data from an HTTP server through a WAP Gateway, which is
located between the WAP device and the HTTP server. The WAP gateway acts as an
interpreter between WAP devices and the HTTP server and it handles all data
forwarding and filtering or conversation so that the devices just get WAP and not
HTTP. This means that WAP service providers only need to have a web server to be
able to serve WAP content. For some providers, it may be desirable to have a WAP
gateway, and this is easily accommodated. Depending on the configuration access, the
content can be granted from any WAP gateway, or only from specific gateways. Figure
5 summarises how a WAP gateway works13:

12 http://www.handytel.com/technology/wap08.htm
13 Forte, et al, 2000

Internet
1. User requests WAP
 content

4. WAP device receives
 and displays data

2. Request is sent to WAP
server for processing

3. WAP server sends
requests data back to
device

WAP Device WAP Server

WAP devices request and receive data from WAP servers.

Mobile Software Development for an Open Source E-Learning Platform

14

Figure 5

The first version of WAP (version 1.0) was released in 1998. Since then, there have
been enhanced versions such as WAP version 1.1, version 1.2, and version 1.3. The
latest version of WAP (version 2.0) has been launched on 31 July 2001 by including
new features such as the ability to include new colour, multi media messaging (MMS),
large-file downloading, improved navigational menus, and user friendly menus14.

While WAP V1 uses Wireless Markup Language (WML), WAP V2 uses eXtensible
HyperText Markup Language (XHTML) and WML. This means that WAP V2 also
provides backwards compatibility to the existing WAP content and thus protects the
investment in the previous version. In the use of the WAP V1 protocols (WDP, WTP
and WSP), WDP uses UDP/IP over all bearers that support IP access, e.g. GSM-GPRS,
and standard LANs etc. In addition to this WAP stack introduced in WAP V1, WAP V2
adds support and services on a stack based on the common Internet stack namely
TCP/IP, Transport Layer Security (TLS) and HTTP. These added features in WAP V2
adopt the most recent Internet standards and protocol.

For this project, I have implemented Wireless Markup Language (WML), namely WAP
version 1.1., and have tested the application using a simulator from Openwave SDK 5.1.
Although this simulator includes a phone simulator incorporating Openwave Mobile
Browser 6.0, which supports the WAP 2.0 standard, WAP 1.1 is preferred, since
XHTML phones will be expected in late 2002 or early 2003 in Europe15. Nevertheless,
as mentioned above, the full backwards compatibility support for WML 1 applications
is provided in the Wireless Application environment for WAP 2.0. through either native
support for both languages WML1 and XHTML Mobile Profile markup language
(XHTMLMP) or by a defined transformation operation of WML1 to WML version 216.

WAP is obviously very simple and graphics-free in a similar way to the early days of
the web. However, it is an effective communication medium and can provide simple,
fast access to content.

14 WAP-Forum. Releases WAP 2.0 Specification For Public Review, 1st August 2001
15 http://www.openwave.com
16 WAP 2.0 Technical White Paper

Internet

WAP Device
HTTP Server

1. User requests content from
HTTP server

3. Request is sent to HTTP
server for processing

6. WAP device receives
and displays data

2. Requested is routed to
WAP gateway which
forwards the request as
an HTTP request

4. HTTP server returns
requested data

5. WAP gateway converts
received HTTP data to WAP
and then forwards it to the
device that requested it

WAP Gateway

WAP devices can request and receive data from HTTP servers via WAP gateways.

Mobile Software Development for an Open Source E-Learning Platform

15

2.2 Security in the Wireless Application Protocol

Wireless devices make a WAP request through the wireless network to a WAP gateway.
The WAP gateway translates requests from a WML browser into HTTP requests for
data over the Internet. The WAP gateway executes the request on behalf of the browser,
constructing and passing along HTTP variables. Once the Web server processes the
request, it replies to the WAP gateway. The HTTP response from the Web application
gives XML and the WAP gateway compiles it into the WAP binary XML Content
Format (WBXML) and sends the WBXML version of the response to the wireless
device17.

This WAP request/response data path is exactly the same as the request/response cycle
to a Web application. In fact, since the WAP gateway is a proxy18 for the WML
browser, the security of the request/response chain has all the features and problems of a
secured HTML site. The Wireless Transport Layer Security (WTLS) that belongs to the
WAP protocol stack takes the responsibility of the security of this communication.
WTLS provides security for the data exchanged directly between the wireless device
and the WAP gateway. It works in a very similar way to Secure Sockets Layer (SSL),
which ensures confidentiality using public-key cryptography. The gateway translates
WTLS messages into SSL and vice versa. Since the WAP gateway is the man-in-the-
middle all the conversations between wireless devices and Web applications would be
insecure. To accommodate this problem, gateway providers must practice standard
security procedures such as19:

• Employing a firewall.

• Limiting administrative access to the machine to critical parties only.

• Limiting physical access to the machine.

• Only using gateway software that avoids persistent storage of plain text messages;
in fact, using software that destroys the plain text as soon as possible.

• Automatically monitoring the machine for new process creation and other
indications of compromise with professional management software.

A secure WAP gateway will provide an excellent confidentiality and data integrity of a
platform.

2.3 The Wireless Markup Language

The markup language used for describing the structure of documents to be delivered to
wireless devices is called Wireless Markup Language (WML). As a desktop computer
uses the HTML Internet browser, WML is used by wireless browser. WML was created
to deal with the display, bandwidth, and memory limitations of mobile and wireless
devices such as cellular phones. WML was based on eXtensible Markup Language
(XML) so that the language would survive the demands and fluctuations of turbulent

17 Forte et al, 2000
18 Proxy is an interface-specific object that provides the parameter marshaling and communication
required for a client to call an application object that is running in a different execution environment, such
as on a different thread or in another process. The proxy is located with the client and communicates with
a corresponding stub that is located with the application object that is being called.<http://www.host-
web.fr/iishelp/adc/docs/adcdef01_1.htm>
19 Forte et al, 2000

Mobile Software Development for an Open Source E-Learning Platform

16

standardisation. By using XML as a base, WML was designed to be a lightweight
protocol that would meet bandwidth limitations of existing mobile devices. The WML
supports following areas such as20:

• Text presentation and layout – Line breaks, text formatting, and alignments are
supported by WML, although specific devices and WML browsers vary in their
output of WML code.

• Images – WML supports the Wireless Bitmap (WBMP) image format and image
alignment on the screen. An example of using the WBMP for this project is
illustrated in Chapter 4.4.

• User input – WML support choice lists, multilevel choice lists, text entry, and task
controls.

• Card and deck organisation – While a single HTML web page viewed is essentially
the contents of a single .htm file, a WAP 'page' sends more than one of these pages
at once. This is done because of the small screen sizes, so that the phone can cache
multiple fragments of content for future use. This collection of fragments is known
as a 'deck', and the page fragments themselves are known as 'cards'. Each deck can
also feature a 'template' which defines common characteristics for each of the cards
within that deck. The multiple WML cards in one deck will be saved as a single file.
An example of implementing card and deck for this project is illustrated in Chapter
4.4.

Figure 6

• Navigation – WAP supports the standard Internet URL naming scheme and
anchored links, allowing navigation between cards in a deck, between decks, or
between other resources on the network.

2.4 WAP as an Independent Protocol and the Bearer Services

WAP is important because it provides an advanced path for application developers and
network operators to offer their services on different network types, bearers and
terminal capabilities. The design of the WAP standard separates the application
elements from the bearer being used. This helps in the migration of some applications
from Short Message Service (SMS) or Circuit Switched Data (CSD) to General Packet
Radio Service (GPRS).

20 Forte, et al, 2000 and Pearce, 2000

Deck

Template

Card 1

Card 2

Card 3

Mobile Software Development for an Open Source E-Learning Platform

17

WAP is designed to work with most wireless networks such as Code Division Multiple
Access (CDMA), Global System for Mobiles (GSM), or Universal Mobile Telephone
System (UMTS). Furthermore, WAP has been designed to work with all cellular
standards. It can be built on any operating system including PalmOS, EPOC, Windows
CE, OS/9, and JavaOS, etc21.

2.4.1 Short Message Service

Short Message Service (SMS) with its limited length of 160 characters per message is
not normally an adequate bearer for WAP. The overhead of the WAP protocol would
be required to be transmitted in an SMS message, which means that even for the
simplest of transactions several SMS messages might have to be sent. This involves
time and is cost consuming22.

2.4.2 Circuit-Switched Data Transmission Services

Many older WAP based services use CSD as the underlying bearer. CSD is a data
transmission service that requires the establishment of a circuit-switched connection
before data can be transferred from source data terminal equipment (DTE) to a sink23

DTE using a connection-oriented network. The so-called dial up connection can take
about 10 seconds to connect the WAP client to the WAP Gateway. For WAP phones
that do not support V.110 the digital protocol, or the WAP Gateway that does not have a
digital direct connection such as ISDN into the mobile network, there is a lack of
immediacy and the connect time could increase to about 30 seconds. V.110 is the digital
protocol that means that an end-to-end digital call can be made without the need for
modem handshaking providing that the network operator has a digital private wire
between the WAP Gateway and the mobile network. V.110 cuts the connection time for
end to end digital calls to 4-8 seconds typically24. Without V.110, it can be expensive to
establish frequent data connections with minimal data transfer volume.

2.4.3 General Packet Radio Service

General Packet Radio Service (GPRS) provides a solution to the problem of long
connection set-up times by introducing new nodes into the GSM (Global System for
Mobile communications) network to allow packet switched data traffic. This bearer has
no dial-up connection. GPRS offers faster data transmission via a GSM network within
a range 9.6 kbps to 115 kbps. The signalling and data traffic do not travel through the
GSM network. The GSM network is only used for table look up, in the Location
Register (HLR and VLR) databases, to obtain GPRS user profile data25.

GPRS infrastructure and mobile phones support data transmission speed of up to 13.4
kbps per channel. Because more than one channel is used for downlinks, GPRS mobile

21 Open Mobile Alliance Ltd, 2002
22 http://www.handytel.com/technology/wap07.htm
23Data Terminal Equipment (DTE): In a data communication network, the data source, such as a
computer, and the data sink, such as an optical storage device. Glossary can be found at
<http://www.provu.co.uk/glossary.html>
24 http://www.handytel.com
25 http://www.cellular-news.com

Mobile Software Development for an Open Source E-Learning Platform

18

phones allow for higher data transmission speeds. There are several types of phones ,
which use a different number of channels for data transmission18:

• Type 2+1 – two downlink channels and one uplink data transmission channel that
can receive 26.8 kbps and send 13.4 kbps.

• Type 3+1 – three downlink channels and one uplink data transmission channel that
can receive 40.2 kbps and send 13.4 kbps.

• Type 4+1 – four downlink channels and one uplink data transmission channel that
can receive 53.6 kbps and send 13.4 kbps.

The GPRS mobile phones are classified into the following three classes in terms of the
possibility of simultaneous calls (via GSM) and data transmission (via GPRS)18:

• Class A – Simultaneous calls (via GSM) and data transmission (via GPRS)

• Class B – Automatic switching between the GSM and the GPRS mode is possible
according to telephone settings.

• Class C – Hand operated switching between the GSM and the GPRS mode

With GPRS, any channel that is not busy with a call is pooled into one packet channel,
which is shared among all users that want to send and receive data. When more users
make calls in the cell, the available bandwidth for data traffic decreases, and when they
hang up, it increases.

One efficient way of sending content to a mobile phone is by the user, maintaining more
or less a permanent GPRS (mobile originated) session with the content server.
However, mobile terminated IP traffic might allow unsolicited information to reach the
terminal and this may cause Internet sources to be not chargeable. A possible worse
case scenario would be that mobile users would have to pay for receiving unsolicited
junk content. It means that by originating the session themselves from their handset,
users confirm their agreement to pay for the delivery of content from that service.
However, users could make their requests via a WAP session, which would not
therefore need to be blocked. As such, a WAP session initiated from the WAP
microbrowser could well be the only way that GPRS users can receive information onto
their mobile terminals26.

Because the bearer layer is separated from the application layer in the WAP protocol
stack, WAP provides the ideal defined and standardised means to port the same
application to different bearers. As such, many application developers will use WAP to
facilitate the migration of their applications across bearers, once GPRS based WAP
protocols are supported.

2.4.4 Universal Mobile Telephone System

UMTS stands for 'Universal Mobile Telecommunications System' and is one of the
major new 'third generation' (3G) mobile communications systems already launched. In
contrast to the GSM-Standard, the net structure and the method of the radio system of
UMTS can be developed separately and they can still match each other. The important
reason for this is because UMTS is a group of standard that can be employed

26 http://www.handytel.com

Mobile Software Development for an Open Source E-Learning Platform

19

alternatively since there is no worldwide standard. The method of the radio system is
the CodeDivisionMultipleAccess2000MC-standard that set up the American CDMA net
and WidebandCDMA. WCDMA offers Frequency Division Duplex (FDD) and Time
Division Duplex (TDD). Europe and Japan deploy predominantly WCDMA-FDD and
use WDMA-TDD just in special cases27.

According to the UMTS forum, UMTS will play a key role in creating a mass market
for high-quality wireless multimedia communications that will exceed 2 billion users
worldwide by the year 2010 and over 100 3G licenses have already been awarded28.

The licence fee of UMTS was very high (63 billion (bn) Deutsche Marks ($29.29bn) in
Germany, and in the UK £22.5bn ($34.5bn)) but the forecasts for Germany's auction
were halved after the licences covering the Netherlands raised $2.4bn, a third of the
amount expected. That uncertainty has led to analysts predicting that the total raised by
the licences could end up anywhere between 25 and 61 billion Euro29. Nevertheless, the
UMTS forum said that UMTS will deliver low-cost, high-capacity mobile
communications, offering data rates as high as 2Mbit/sec, which will be available in
certain small areas if a user is standing still and using the base station alone. A user
driving a car in rural areas will probably not be able to use more then about 100 kbps.

Although UMTS can deliver high-value broadband information, as well as commerce
and entertainment services to mobile users via fixed, wireless and satellite networks,
UMTS will provide data traffic rather than voice services because of the high cost. With
the latest WAP version 2.0 and the higher capable network bearers such as GPRS and
UMTS, new types of content such as steaming media and provide ‚always on‘
availability are permitted.

Finally, the bandwidth required by application users can be expected to steadily
increase. Therefore, there is still a need to optimise the device and network resources for
wireless environments. Multimedia applications enhancement in WAP version 2.0 is the
most relevant step. If WAP is very successful in mass-markets on 2.5G networks, 3G
networks may be needed purely for capacity relief.

2.5 Presentation Techniques: i-mode versus WAP

I-Mode is a product from the Japanese operator telco NTT DoCoMo. While WAP uses
WML, i-mode services are written in cHTML. It is said that this is an advantage as
cHTML is only a subset of HTML and it is easy for interface programmers to adapt.
However, WML is very similar to HTML too and it is doubtful that HTML
programmers would have difficulties in adapting to it.

In addition, i-mode has focused on adapting terminals to the type of content served,
while WAP has adapted the content to the terminals that should handle it. The outcome
of this difference is that i-mode is very graphic and appealing, while WAP has a very
flexible and effective protocol stack30. NTT Docomo has already launched i-mode in
Europe in June 2002 and already has over 34,000 i-mode customers in Germany (E-
Plus) and the Netherlands. To stay online on the network, E-Plus uses the packet

27 Glahn, 2001
28 The lists of countries, which have been awarded can be found at
 <http://www.umts-forum.org/licensing.html>
29 http://news.bbc.co.uk/1/hi/business/876554.stm
30 WML versus cHTML <http://www.netlight.se/imodevswap.html>

Mobile Software Development for an Open Source E-Learning Platform

20

switching technology GPRS31, which makes access faster, and allows users to pay only
for the amount of data downloaded rather than for the duration of the connection.

According to the experts, the expected launch of Japan's wireless web technology, i-
mode, into the European market will not spell the end for Wap applications. Instead,
industry players believe that i-mode will merge with WAP rather than replace it. Iveca
Juresa, European business manager for mobile e-services at Hewlett Packard said that i-
mode will not replace WAP because there are over 400 companies behind the WAP
standard today, while i-mode is a standard by one company, NTT-Docomo32.

The use of circuit switched networks today, however, is not due to WAP. WAP works
well in packet switched networks. The reason for the circuit switched technology is that
WAP today is used in GSM networks. With the introduction of GPRS and 3G networks,
this will change.

3 Java 2 Micro Edition, Java 2 Enterprise Edition and the Products

3.1 Java 2 Micro Edition (J2ME)

J2ME, Java 2 Micro Edition is a new, very small application environment with tools
and supplies for developing applications for mobile devices. It targets mobile devices
with the runtime of an equivalent size to WAP 2.0 and i-mode 3.0 browser stacks. It
contains:

• Java virtual machines that fit inside the range of consumer devices.

• A library of APIs that are specialised for each type of device and tools for
deployment and device configuration.

• A profile, i.e. a specification of the minimum set of APIs useful for a particular kind
of consumer device (set-top, screen phone, wireless, car, and digital assistant) and a
specification of the Java virtual machine functions required to support those APIs.

J2ME is the smallest of the JAVA continuum and can be shown in the Figure 7 below:

Figure 7

31 http://www.eplus-imode.de/1/de/html/pub/presse/index.html
32 Woffende, 2000

Mobile Software Development for an Open Source E-Learning Platform

21

The configuration consists of a virtual machine, core libraries, classes and APIs. There
are two J2ME configurations at present: the Connected Limited Device Configuration
(CLDC) and the Connected Device Configuration (CDC). CLDC is designed for
devices with constrained Central Processor Unit (CPU) and memory resources. These
devices run typically on either a 16- or 32-bit CPU and have 512 Kbytes or less memory
available for the Java platform and applications. CDC is designed for next-generation
devices that run on a 32-bit CPU and have 2Mbytes or more memory available for the
Java platform and applications.

The Mobile Information Device Profile (MIDP) is a set of Java APIs that, together with
CLDC will provide a complete J2ME application runtime environment targeted at
mobile information devices such as cellular phones and two-way pagers. The MIDP
specification addresses issues such as user interface, persistence storage, networking,
and application model.

The Pros and Cons are illustrated to compare J2ME to WAP:

• With J2ME it is possible to write device independent applications with more
features than for WAP. The applications are easy to download and possible
applications are limited almost only by the mind. For example a group of people
could have the same address book available on a server somewhere or a photo
collection. People could play multi-user games over their GPRS connection or get
the latest stock information. Signatures could be written from a distance and
payments can be made.

• J2ME needs no gateways. This makes testing simpler, quicker in terms of time and
lower in terms of cost.

• While one can just browse with WAP, Java provides interactivity and allows
operation offline; For example, playing games.

• The existing HTML sites/solutions must be rewritten. This is the same as WAP.

• The Graphical User Interface components are extremely limited, just for simple
application and simple games.

• In terms of security, J2MEs handset maker has the option NOT to do SSL while, as
mentioned above in the Chapter 2.2, a security hole can occur in WAP. However,
this drawback in terms of security of WAP can be avoided by using technologies
such as Firewall etc.

Although J2ME uses a full-features Java-based application environment that provides
users with all the varieties of monochrome interface seen on WAP phones today, I have
chosen to use the technology of WML/WAP for this project because of the difference in
recent development between J2ME and WAP devices. The research shows that there are
only 34 mobile phones that support Java devices33 while 99% of mobile phones on the
market support WAP with more than 300 million subscribers34. In addition, the recent
development in WAP 2.0 will support the features provided in J2ME. Furthermore,
WAP 2.0 supports backwards compatibility, so that a migration of the WAP version
used for this project, to WAP 2.0 is possible.

33 http://www.javamobiles.com/
34 WAP Forum Ltd, M-Commerce World, London 2001

Mobile Software Development for an Open Source E-Learning Platform

22

3.2 JavaTM 2 Platform, Enterprise Edition Specification

Enterprises nowadays gain competitive advantage by quickly developing and deploying
custom applications that provide unique business services. This could be an internal
application for employee productivity, or Internet applications for specialised customer
or vendor services, or institutes. The keys to success are quick development and
deployment. In addition, portability and scalability are also important for long term
viability. Enterprise applications must scale from small working prototypes, enterprise-
wide services, accessible by tens, hundreds, or even thousands of clients
simultaneously.

In 1997, Pountain and Montgomery introduced Multi-Tier-Architecture, which is used
as a basis today for enterprise applications35. However, multi-tier applications are hard
to design because they require a variety of skill-sets and resources. In today's
heterogeneous environment, enterprise applications have to integrate services from a
variety of vendors with a diverse set of application models and other standards. Industry
experience shows that integrating these resources can take up to 50% of application
development time. J2EE defines the standard for developing multi-tier enterprise
applications and simplifies enterprise applications by basing them on standardised,
modular components, by providing a complete set of services to those components, and
by handling many details of application behaviour automatically, without complex
programming.

Since J2EE is written in Java, it has "Write Once, Run Anywhere" portability, Java
Database Connectivity (JDBC) API for database access, CORBA technology for
interaction with existing enterprise resources (Internet Inter-ObjectRequestBroker
Protocol (IIOP)-API, and a security model that protects data even in internet
applications. Building on this base J2EE adds full support for Enterprise JavaBeans
(EJB) components, Java Servlets API, JavaServer Pages (JSP) and XML technology36.
The Java Messaging Service (JMS) allows J2EE deployment to communicate using
messaging both within and outside the J2EE system. Connectors allow an access of
existed information systems from a J2EE deployment. This could be any system such as
mainframe systems running high-end transactions, Enterprise Resource Planning (ERP)
systems or even proprietary systems. Connectors are useful because they manage the
details of middleware navigation to an existing system automatically, for example
handling transactions and security concerns. In addition, a single driver can be written
to access an existing system to be deployed into any J2EE-compliant server. In addition,
this driver can be reused in any J2EE server. This is a huge benefit for independent
software vendors (ISVs) who want their software to be accessible from within
application servers because they do not have to write a custom driver for each server.
J2EE takes Java’s Enterprise API’s and bundles them together in a complete
development platform for enterprise-class server-side deployments written in Java.

Figure 8 shows some of the major technologies of J2EE working together37:

35 Pountain, et al, 1997
36 http://java.sun.com/j2ee/overview.html
37 Roman et al, 2002

Mobile Software Development for an Open Source E-Learning Platform

23

Figure 8

3.3 Enterprise JavaBeans

The SunTM Enterprise JavaBeans specification defines architecture and interfaces for
developing and deploying distributed Java server applications based on multi-tier
architecture. This specification intends to facilitate and normalise the development,
deployment and assembling of applicative components. These components are called
Enterprise Beans, which will be deployable on EJB platforms. The resulting
applications are typically transactional, database-oriented, multi-user, secured, scalable
and portable. Precisely, this EJB specification describes two kinds of information38:

1. The runtime environment called EJB server, which provides the execution
environment together with the transactional service, the distribution mechanisms,
the persistence management and the security.

2. Some kind of programmer's guide and user's guide explaining how an enterprise
bean should be developed, deployed, and used.

The EJBTM specification defines a server component model. An Enterprise JavaBean
(EB) is a "non visual" software component running on the server-part of an application
and may be configured at deployment time by editing its properties. The resources
needed by an EB are the API of J2EE the above mentioned, plus transactional services,
storage services, security services, naming services, and messaging services. The EJB

38 http://www.objectweb.org/jonas/current/doc/JOnASWP.html

Mobile Software Development for an Open Source E-Learning Platform

24

server provides such resources to the bean. The interface between an EB and the EJB
server is materialised by an architectural component called "container". The container
is in charge of the EB instances life cycle and persistence, and of the interaction with
the transaction and security services. The following parts compose an Enterprise Bean
to be developed by the Enterprise Bean Provider34:

• The "Remote Interface" is the client view of the bean. It contains the signatures of
all the "business methods" of the bean.

• The "Home Interface" contains the signatures of all the methods for the bean life
cycle (creation, suppression) and for instances retrieval (finding one or several
beans) used by the client application.

• The bean class, which implements the business methods, and all the methods
(described in the EJB specification) allowing the bean to be managed in the EJB
server.

• The deployment descriptor, containing the bean properties that may be edited at
configuration time.

In the specification, there are three kinds of enterprise beans defined39:

1. Session beans. There are stateful and stateless session beans. Stateful beans are
objects that retain across client invocations and are not easily pooled and scaled,
such as the shopping cart, or transactional data cache State holder (for multi-step
form before data is inserted). The opposite of that is stateless. Examples of stateless
beans are the workflow engine, catalogue engine, and credit card authoriser.

2. Entity beans. Those are objects that represent data in a database. They may be
shared by several clients and are identified by means of a primary key. An EJB
environment is responsible for managing the persistence of such objects for example
a product, an order, an employee, student, stock, or a purchase order.

3. Message-driven Beans. They are similar to session beans in that that they are
actions. The difference is that message-driven beans are called by sending them
JMS (Java Message Service) messages. Examples of this are credit card authoriser,
purchase order processor, and order and workflow processor, etc.

There is management and feature of JavaBeans that will be illustrated directly in the
next Chapter to gain a better understanding what the further specification of JavaBeans
tells and what the chosen JavaBeans product for this project provides the EJB
specification.

3.4 The Products of J2EE and the OpenUSS Architecture

As Java2 Enterprise Edition is only a specification, a product of J2EE is needed to
enable building such a platform. The products that are used by OpenUSS are JOnAS for
the EJB container and Enhydra for the servlets container. Since OpenUSS is Open
Source so are JOnAS and Enhydra. JOnAS is a pure Java™ implementation of the
EJB™ specification that relies on JDK and is part of the ObjectWeb Open Source
initiative. Enhydra is the first and leading Open Source Java/XML application server
that was initially created by Lutris Technologies Inc, an Open Source Enterprise

39 Roman, et al, 2000

Mobile Software Development for an Open Source E-Learning Platform

25

Software and Services company. The Enhydra.org project is similar to Apache, but with
a focus on E-Business software revolving around the application server40.

JOnAS implements the EJB specification, by providing all the elements of an EJB
Server such as Transaction Manager, Persistence Manager, Security Manager, and the
tools to generate containers.

Following are further features of EJB and what the EJB product JOnAs supports41:

• TRANSACTION MANAGEMENT. With EJB, transaction control is no longer
hard coded in the server application, but is configured at deployment time. This is
known as "Container-managed transaction demarcation". With "Container-
managed transaction demarcation" the transactional behaviour of an enterprise bean
is defined at configuration time and is part of the deployment descriptor of the bean.
The container is responsible for providing the transaction demarcation for the
enterprise beans.

Only two kinds of beans, session beans and message-driven, can be used with
"Bean-managed transaction demarcation". In this case, the container is responsible
to suspend any transaction that may be associated with the client request.

JOnAS is built on top of the Java Transaction Manager (JTM), which implements
CORBA Object Transaction Service. The JTM manages distributed transactions,
whose context is implicitly propagated with the distributed requests. The JTM may
be distributed across one or more EJB servers; thus a transaction may involve
several beans located on different EJB servers. JTM's transactions may be
demarcated explicitly by the client, or the bean itself. It may also be implicit, i.e.
performed by the container according to the transactional attributes values. Figure 9
shows JOnAs’s configuration of transaction management of different distribution
architecture cases for three Enterprise Beans involved in the same transaction.

Figure 9

40 http://www.enhydra.org and http://objectweb.org
41 http://www.objectweb.org/jonas/current/doc/JOnASWP.html

Mobile Software Development for an Open Source E-Learning Platform

26

Figure 9 allows JOnAS to differ following architecture configurations:

1. Case 1: The three beans B1, B2 and B3 are located on the same EJB server,
which embeds a Java Transaction Monitor.

2. Case 2: The three beans are located on different EJB servers, one of them
running the Java Transaction Monitor, which manages the global transaction.

3. Case 3: The three beans are located on different EJB servers, the Java
Transaction Monitor is running outside of any EJB server.

4. Case 4: The three beans are located on different EJB servers. Each EJB
server runs a Java Transaction Monitor. One of the JTM acts as the master
monitor, while the two others are slaves.

Of course, the EJB servers may be located on the same or on different machines.
Each EJB server runs in a separate Java Virtual Machine (JVM), as well as the JTM
when it runs in a stand-alone way (not within an EJB server, as in case 3).

• PERSISTENT MANAGEMENT. As mentioned above, the EJB specification
defines three kinds of bean: Session beans, message-driven beans, and entity beans.
As opposed to session beans, an entity bean represents persistent data. That is an
object view of an entity that is stored in a persistent storage such as database. The
persistence management of such an object is entirely transparent to the client that
will use it, and may be or may not be transparent to the bean provider that will
develop it. This conforms to the EJB reference architecture where the client does not
see any data access operation, such operations being used on the server side
enterprise bean implementation only. An entity bean may be one of the two
following categories:

• An enterprise bean with Container-Managed Persistence. In such a case,
the bean provider does not develop any data access code, persistence
management is delegated to the container. The bean provider describes
persistence for the transactional aspect in the bean descriptor. This
description provides the mapping between the fields of the bean and the
persistent storage (generally the attributes of a relational table of database).

• Enterprise bean with Bean-Managed Persistence. In this case, the bean
provider writes the database access operations in the methods of the
enterprise bean that are specified for data creation, load, store, retrieval, and
remove operations (ejbCreate, ejbLoad, ejbStore, ejbFind..., ejbRemove).

In both cases, the data access operations are generated by the EJB environment
using JDBC or Java Standard Query Language (JSQL) to access relational
databases, or using other (proprietary) classes for accessing non relational data
storage.

JOnAS supports entity beans that conforms to the EJB specification and is based on
JDBC:

• Bean-Managed Persistence: the bean provider is able to develop entity
beans, the states of which are stored in relational databases. The bean
provider should develop the data access methods using the JDBC interface.

• Container-Managed Persistence: the EJB environment automatically
handles data storage and access operations in a relational database. The bean

Mobile Software Development for an Open Source E-Learning Platform

27

provider only needs to provide a bean descriptor containing information
about the fields mapping into the database schema and the JDBC DataSource
(driver and database URL).

Today, persistence management is also supported via the JDBC interface on most
relational databases such as Oracle, Sybase, InstantDb, Postgres, Ingres, Interbase,
SQL Server, etc.

• SECURITY MANAGEMENT. The aim of the security in the EJB architecture is
to control the access to the methods of an EJB. All the concepts of security are
based on the notion of roles. By a given set of roles the methods can be accessed. In
order to access the methods, the user must be at least in one of this set of roles.
These roles and the mapping between roles and methods (permissions) present a
simplified security view of the enterprise beans application. The System
Administrator has to map the set of security roles to the "specific" roles of a target
operational environment, i.e. groups on Unix systems. The EJB specification defines
two kinds of security management:

• declarative security management. It is set by the Bean Deployer or
Application Assembler to integrate the security on an EJB component in the
target operational environment.

• programmatic security management. It is used by the Bean Programmer to
enforce security in the code of the EJB itself in such situation where the
declarative one is not sufficient.

These two kinds of security management are not limited: in most "real world"
applications, they complete each other to make the EJB architecture more secure.

In JOnAS, the security is available with the following restrictions:

• User authentification should be provided by the client of the EJB (i.e. the
Web server), which must initiate and propagate the security context with
calls to EJB.

• There is no mapping concerning the security between JOnAS and the target
operational environment. It means that the roles defined for JOnAS cannot
be mapped to roles of the target operational environment, i.e. groups on Unix
Systems.

• JAVA MESSAGING SERVICE (JMS). The JMS API adds to this a common API
and provider framework that enables the development of portable, message based
applications in Java. Using this JMS API, it is possible for any EJB component to
send or "synchronously receive" JMS messages. The bean programmer has the
possibility to use resources such as a DataSource. Thus, the bean programmer is
able to provide JMS code inside of an EJB method in order to send a message
toward a JMS Queue. In addition, JMS API in the J2EE 1.3 platform provide the
message-driven bean to enables the asynchronous consumption of messages. A
developer can easily add new behaviour to a J2EE application with existing business
events by adding a new message-driven bean to operate on specific business events.

For asynchronous EJB method invocation, JOnAS provides Message-driven Beans
as specified in the EJB 2.0 specification. A Message-driven Bean is an EJB
component which may be considered as a Java Message Service MessageListener,
i.e. which processes JMS messages asynchronously: it implements the
onMessage(javax.jms.Message) method, defined in the javax.jms.MessageListener

Mobile Software Development for an Open Source E-Learning Platform

28

interface. It is associated with a JMS destination, the onMessage method will be
activated on the reception of messages sent by a client application to this
destination.

• DISTRIBUTION. The distributed environment in the EJB world is Remote Method
Invokation (RMI). RMI is the Java language’s native way to communicate between
distributed objects for example that two different objects running on different
machines.

Currently JOnAS is working on two distributed processing environments; RMI using
the SunTM proprietary protocol JRMP and Jeremie, the RMI called Jonathan. With
Jeremie, JOnAS benefits from local RMI calls optimisation. In the future, JOnAS will
support RMI/IIOP, thus providing CORBA interoperability.

As mentioned above, OpenUSS uses Enhydra as a servlets container. Enhydra is a
Java/XML Application Server that multi-tier (presentation, business logic and data
store) design and implementation can be distributed across the network for
incorporating existing business objects. This configuration can be done as an all-servlet
architecture or used in conjunction with an Enterprise JavaBean server for larger
mission critical deployments. The Enhydra Java Application Server is functionally
complete as a general-purpose application server. But, when the need arises, new
components can be added, or existing components can be swapped out and replaced
with customer-specific functionality, such as building access control around a
proprietary, legacy interface. Once compiled, the Enhydra application server serves
applications through standard Web servers, such as Apache or Netscape. Enhydra is also
capable of acting as a Web server, handling HTTP requests directly from browsers42.

Figure 10

42http://www.enhydra.org

Mobile Software Development for an Open Source E-Learning Platform

29

Figure 10 shows the Application Architecture of Enhydra. Following is the illustration
of run-time modules and tools include43:

• ENHYDRA APPLICATION FRAMEWORK – That is a super-servlet run-time
environment of common services (session, presentation, database connectivity)
for supporting N-tier Enhydra applications. The Enhydra Application
Framework provides all the infrastructure of a Web application, but none of the
content. An application object and a set of presentation objects are simply to be
added to have a complete Web application.

• ENHYDRA MULTISERVER – Enhydra applications may be run from any
Servlet-compatible Web server, such as Apache or Netscape Enterprise Server.
They may also be run from the included Enhydra Multiserver, which acts as a
stand alone Web server. The Multiserver also provides Common Gateway
Interface (CGI) and Web Application Interface (WAI) so that applications can
be run from nearly any Web server. The Multiserver efficiently pools and
services request.

• ENHYDRA XMLC – XML Compiler designed to support vastly improved
designer/developer co-development and create true separation between the
presentation and business layers. Enhydra XMLC is an XML compiler that
converts document templates, including HTML, cHTML, WML, XHTML, and
custom XML, into resources that can be directly accessed from a Java program
using standard Document Object Model (DOM) manipulation syntax. DOM
allows access to XML files so that the XML Compiler will also allow for
presentation objects to serve dynamic content XML. It is used to provide access
methods to read and modify the content. An example of this use for this project
is illustrated in Chapter 4.4.

• ENHYDRA Java Designer Developer Interface (JDDI)-Compiler – a structured
approach to using embedded Java for dynamic HTML. The Enhydra JDDI
compiler provides developers and Web interface builders with the ability to
construct highly maintainable dynamic HTML presentation objects of integrated
HTML and server-side Java. Sections of embedded Java HTML and Java
functionality are integrated via easy-to-maintain "sections". Sections make it
easy to separate Java areas from the more static HTML sections. This approach
to User Interface design gives HTML designers the ability to access to dynamic
data generated by Java sections without accidentally corrupting Java code.
Access to dynamic data and decoded CGI parameters are provided to both
HTML and Java through Enhydra JDDI Fields. Compiled with the Enhydra
JDDI compiler into Java classes, applications can be shipped as convenient, high
performance jar files44.

• ENHDRA Distributed Oceanographic Data System (DODS) – DODS is a
graphical object-oriented design tool using Java Foundation Classes (JFC) that
generates the data objects-to-relation database code. DODS allows you to design
the data-layer classes for an application that will utilise the Enhydra Application
Framework. DODS generates and compiles the resultant Java source code.

43[http://enhydra.enhydra.org/software/tour/index.html#eaf] and
[http://www.pisoftware.com/publications/JavaColumn/appservers.9902.html]
44 The JavaTM Archive (JAR) file format enables you to bundle multiple files into a single archive file.
<http://java.sun.com/docs/books/tutorial/jar/>

Mobile Software Development for an Open Source E-Learning Platform

30

• ENHYDRA APP WIZARD – The application wizard is designed to quickly
bootstrap the application development process. The application wizard creates a
new source tree for a simple Enhydra Web application. When executed, it asks
for the name of the application for which the application environment is to be
instantiated. For teaching purposes, the Wizard application is also an excellent
example itself of an Enhydra application.

• ENHYDRA MANAGERS – Presentation Manager manages the presentation
objects (.po-objects), session manager enables state management within the
application that is essential for an application such as a transaction oriented e-
Commerce application. The database manager maintains a pool of JDBC
connections to a database, allowing for much faster database access.

Enhydra has integrated JOnAS within Enhydra Enterprise and is contributing to JOnAS
developments. All in all JOnAS and Enhydra have a good rating as application server.
The concept and the architecture of the server are very well elaborated. Designing the
application in this way minimises the impact on the application when databases, file
formats or URL layouts are switched.

Mobile Software Development for an Open Source E-Learning Platform

31

4 OpenUSS-WAP Software Development

4.1 Requirement Analysis and Use Cases

Requirement analysis is a software-engineering task that bridges the gaps between
system level requirements engineering and software design45. Requirement analysis is
important to build a software solution that solves problem.

For this project I have designed a program that enables OpenUSS-System’s users to
retrieve the exact information that is provided on the OpenUSS HTML web via mobile
devices. In the development of requirements several assumptions are made for problem
recognition, evaluation and synthesis, and review in software requirement analysis:

• Information such as registration, faculties, subjects, and news have to be provided at
the first stage on the HTML web of OpenUSS before data can be retrieved via
WAP. That information will be saved in the database, which will be accessed
through WAP. Users can only retrieve information via WAP and not create, delete,
or download files.

• The system is accessible by two separate user groups, namely students and lecturer.
Definition of lecturer is staff member such as lecturer, assistants and other
universities staffs, who have an access right. In addition, user can access Faculty in
the system directly in order to retrieve news of faculties promptly without login
action. However, no news of a subject can be retrieved, since one has to be
registered to be able to do that.

• A WAP user interface will offer the possibility for users to select the user group.
This of course is only valid for those who are registered and given access to it.

• After selection of the correct role, users authenticate themselves via username and
password (login).

• Once users have logged on they can choose from the following options:

• a student-role providing details on

Registered faculties & subjects where the student is enrolled.

- Information on all subjects during a semester. Semester could be
named e.g. summer and winter semester

- Subject-specific information on courses and new lecture material

• a lecturer/staff-role providing details on

Registered faculties

- Information on faculties a user is registered with

- Once the lecturer has selected the registered faculty number of a
semester he/she is teaching, a subject list appears. By clicking on
this list individual subjects come up. One can select a subject and
access details such as news or lecture material. This is in line
with the student interface. This will allow a lecturer to ensure that
lecture material was put on the web and can be accessed and

45 Pressmann, et al, 2000

Mobile Software Development for an Open Source E-Learning Platform

32

he/she will also be able to monitor the activity of other lecturers
within the same faculty by e.g. reading the news.

• A ‘back’ button as well as ‘go back to main menu’ button is provided to simplify the
search functionality for users.

• An error message for giving the wrong login is also available.

After requirements were gathered, a set scenario is created to identify a thread of usage
for the system to be constructed. The actors that communicate with the system are
identified, student and staff. The use cases of the problem domain specification are
shown in Figure 11 as follows:

Staff Student

view faculties

view semesters

view subjects

view list of lecture
materials

get news

Figure 11

4.2 Activity Diagram

By eliciting information from the developer of OpenUSS and gathering documents,
data, functional and behavioural requirements are identified. To understand the
information domain, an Activity Diagram is used to describe the workflows. There is a
back button of each page that goes to the previous page. In addition to back button,
depending on the mobile devices, in the login page for lecturers/staffs and students there
is also an edit button in case of entering wrong username or/and password. As it is the
nature of mobile devices, the WAP-session can be terminated anytime. Figure 12
illustrates the activity diagram:

Mobile Software Development for an Open Source E-Learning Platform

33
Figure 12

Entering the main page of
OpenUSS- WAP-Browser

select Faculty List

[back]

show all faculties

select a faculty

show news list

select a news

show the news

[back]

[back]

[back]

[back]

[back to the main page]

[wrong entry]

select Lecturer
Login

[back]

show username and
password

entry username and
password

show main page of
lecturer consisting of

faculties

[back]

[back]

select a faculty

[back]

show semesters

select a semester

show subject list

select a subject

[back]

[back]

[back]

[back]

show subject news

select a news

showing the news

[back]

[back]

[back]

[correct entry]

[wrong entry]

select Student Login

[back]

show username and
password

entry username and
password

show main page of
student consisting of all
faculties and subjects

[back]

[back]
[correct entry]

select subject

show news

select one news
topic

show the news

[back]

[back]

[back]

[back]

[back to the main page]

select a faculty

[back]

show semesters

select a semester

show subject list

select a subject

[back]

[back]

[back]

show subject news

select a news

showing the news

[back]

[back]

[back]

[back]

Mobile Software Development for an Open Source E-Learning Platform

34

4.3 Class Diagrams

As illustrated in Chapter 1.2.1, OpenUSS consists of two components, Foundation and
Plugable Components. This Project deals only with the foundation component i.e.
student, assistant (lecturer), faculty, subject, semester, and enrolment are due to the
limited time given. The existing class diagram of the Business Layer of OpenUSS
below illustrates these components:

Figure 13

Mobile Software Development for an Open Source E-Learning Platform

35

The class diagram in Figure 13 defines the relationships and dependencies between the
foundation components of Business and Data Layers as follows:

• Here class Person has a generalisation relationship with the more specific classes
Assistant and Student.

• Class Student is independent from faculty because a student can register for subjects
in different faculties. A student can have many subjects.

• Class Assistant can have access to more than one faculty.

• Class Faculty, Semester, and Subject. A faculty has components of semesters. One
faculty can consist of many semesters and many subjects. Subjects can only be
owned by one faculty.

• Class Enrolment plays an essential role to make sense of the relationship between a
faculty, a subject, and a semester. This class is comparable with an order that shows
a relationship between a customer, a product and a time point.

To be able to retrieve information from the Business Layer, Java servlets are made for
showing the WML file on the WAP-Browser in the Presentation Layer. These Java
servlets should invoke the methods of classes from the Business and Data Layers that
are already made by OpenUSS. Servlet in Enterprise Application is primarily a co-
ordinator. Hence, it should only take on lightweight responsibilities, which could
include initiating some business logic. However, actual business logic, computations,
interaction with entity objects etc, would all be the responsibility of the Business and
Data Layers46.

All the Java servlets of this implementation are shown in the next class diagram. The
relationships between the classes next do not use the association notation considered in
the previous class diagram, but a generalisation. Generalisation is shown as a line
ending with a triangular arrowhead at a class, which is the more general type47. For
example, most of the classes are an extension of class FoundationWapPO, which is in
this case the superclass of the subclasses WelcomeWapPage, FacultyListPage,
StudentLoginAction, LecturerLoginAction, StudentLoginPage, AssistantLoginPage, etc.
Generalisation allows the inheritance of the attributes and operations of a superclass by
its subclasses. Given the stateless nature of the HTTP protocol, managing repeat
interaction can be overcome by saving cookies. This is the responsibility of a servlet
session, which is the class FoundationWapSessionData. These cookies store
information that later can be passed back to the client repeatedly. The Web server
provides the cookie to the browser. SaveSessionWapDataFactory is a factory object for
creating some useful objects such as faculty, semesters or enrolments and saves these
useful objects directly in the session. SaveSessionWapDataFactory uses
FoundationWapSessionData. Classes FoundationWapPOException and ErrorWapPage
are responsible for error message. The class RedirectWap is a ServletContext interface
that can be used by servlets to store and retrieve information and share among the
servlets. The following class diagram shows the implementation of this project:

46 http://www.therationaledge.com/content
47 Bennet, et al, 2001

 36

WelcomeWapPage

-FACULTY_LIST:String="faculty/FacultyListPage.po"
-LOGIN_STUDENT:String="student/StudentLoginPage.po"
-LOGIN_ASSISTANT:String="assistant/AssistantLoginPage.po"

+handleDefault():String
+loggedInUserRequired():boolean
-changeLinks(page:Object):void

FoundationActionWapPO

+handleDefault():String

BaseSessionData
FoundationWapSessionData

+SESSION_KEY:String="WapSessionData"
#myUser:Person=null
#myAccessList:AccessList=null
#myEnrollment:EnrollmentState=null
#myLocale:Locale=new Locale("en", "US")

+removeUser():void
+removeAccessList():void
+removeEnrollment():void

 user:Person
 accessList:AccessList
 locale:Locale
 faculty:Faculty
 semester:Semester
 subject:Subject
 enrollmentFunctionality:EnrollmentFunctionality
 enrollmentForPublic:boolean
 enrollment:Enrollment
 enrollmentId:String
 userId:String
 andClearUserId:String
 userMessage:String
 andClearUserMessage:String
 userExtraId:String
 andClearUserExtraId:String

MainPageOfSemesterForAssistantPage

-MAIN_PAGE_OF_SUBJECT:String="subject/MainPageOfSubjectForAssistant.po"
-CURRENT_PAGE:String="semester/ActivateSemesterForAssistantAction.po"

+handleDefault():String
+loggedInUserRequired():boolean
-showAllSemesters(page:Object):void

AssistantLoginPage

-LOGIN_ACTION:String="AssistantLoginAction.po"

+handleDefault():String
+loggedInUserRequired():boolean

StudentLoginAction

-LOGIN_NAME:String="username"
-PASSWORD_NAME:String="password"
-MAIN_PAGE_STUDENT:String="MainPageOfStudentPage.po"

+handleDefault():String
+loggedInUserRequired():boolean

FacultyNewsPage

-FACULTY_ID:String="FacultyId"
-facultyId:String

+handleDefault():String
+loggedInUserRequired():boolean
-showNews(page:Object):void

MainPageOfSemesterForStudentPage

-MAIN_PAGE_OF_SUBJECT:String="semester/CurrentSemesterForStudent.po"

+handleDefault():String
+loggedInUserRequired():boolean
-showAllSemesters(page:Object):void

FacultyListPage

-FACULTY_NEWS:String="FacultyNewsPage.po"

+handleDefault():String
+loggedInUserRequired():boolean
-showActiveFaculties(page:Object):void

MainPageOfAssistantPage

-MAIN_PAGE_OF_SEMESTER:String="semester/MainPageOfSemesterForAssistant.po"

+handleDefault():String
+loggedInUserRequired():boolean
+showActiveFaculties(page:Object):void

MainPageOfStudentPage

-MAIN_PAGE_OF_SUBJECT:String="subject/MainPageOfSubjectForStudentPage.po"
-MAIN_PAGE_OF_SEMESTER:String="semester/MainPageOfSemesterForStudentPage.po"
-MAIN_PAGE_OF_STUDENT:String="student/MainPageOfStudentPage.po"

+handleDefault():String
+loggedInUserRequired():boolean
-showActiveFaculties(page:Object):void

StudentLoginPage

-LOGIN_ACTION:String="StudentLoginAction.po"

+handleDefault():String
+loggedInUserRequired():boolean

MainPageOfSubjectForStudentPage

-SEMESTER_ID:String="SemesterId"
-MAIN_PAGE_STUDENT:String="/student/MainPageOfStudent.po"
-MAIN_CHOOSED_PAGE:String="/subject/MainPageOfSubjectForStudent.po"

+handleDefault():String
+loggedInUserRequired():boolean
-showAllNews(page:Object):void

AssistantLoginAction

-LOGIN_NAME:String="username"
-PASSWORD_NAME:String="password"
-MAIN_PAGE_ASSISTANT:String="MainPageOfAssistantPage.po"

+handleDefault():String
+loggedInUserRequired():boolean

MainPageOfChoosedSubjectForAssistantPage

-ENROLLMENT_ID:String="EnrollmentId"
-MAIN_CHOOSED_PAGE:String="/subject/MainPageOfChoosedSubjectForAssistant.po"

+handleDefault():String
+loggedInUserRequired():boolean
-showAllNews(page:Object):void

MainPageOfSubjectForAssistantPage

-SEMESTER_ID:String="SemesterId"
-MAIN_PAGE_OF_ENROLLMENT:String="/subject/MainPageOfChoosedSubjectForAssistant.po"

+handleDefault():String
+loggedInUserRequired():boolean
-showEnrollments(page:Object):void

HttpPresentation
RedirectWap

+run(comms:HttpPresentationComms):void

SaveSessionWapDataFactory

-SaveSessionWapDataFactory()
+saveSessionDataForAccessList(po:FoundationWapPO,accessList:AccessList):void
+saveSessionDataForEnrollment(po:FoundationWapPO,enrollmentId:String):void
+saveSessionDataForFaculty(po:FoundationWapPO,facultyId:String):void
+saveSessionDataForSemester(po:FoundationWapPO,semesterId:String):void

BaseWapPO
HttpPresentation

FoundationWapPO

#MAIN_PAGE:String="WelcomeWapPage.po"
#MAIN_PAGE_FOR_ACCESS_APPLICATION:String="enrollment/ApplicationEnrollmentForStudentPage.po"
#MAIN_PAGE_FOR_NO_ACCESS:String="student/MainPageOfStudentPage.po"
#MAIN_PAGE_FOR_ASSISTANT:String="assistant/MainPageOfAssistantPage.po"
#mySessionData:FoundationWapSessionData=null
#myPerson:Person=null

+removeUserFromSession():void
+removeAccessListFromSession():void
+removeAllSessionData():void
+run(comms:HttpPresentationComms):void
#initSessionData(comms:HttpPresentationComms):void
#checkForUserLogin():void
#checkForAccessList():void
#checkStartIndexAndCount(startIndexStr:String,countStr:String,listAmount:int):Vector
#showPreviousAndNextBar(pageName:String,extraParam:String,linkNext:HTMLAnchorElement,linkPrev:HTMLAnchorElement,startIndex:int,count:int,listAmount:int,currentListAmount:int):void

 sessionData:FoundationWapSessionData
 user:Person
 accessList:AccessList
 locale:Locale
 forPublicAccess:boolean

BasePOException
FoundationWapPOException

+FoundationWapPOException(msg:String,ex:Exception)

FoundationWapPO
ErrorWapPage

+handleDefault():String
+loggedInUserRequired():boolean
-changeLinks(page:Object):void

Mobile Software Development for an Open Source E-Learning Platform

37

4.4 Design and Implementation

Before starting with the design, I had to study the OpenUSS architecture thoroughly to
be able to implement my part of the program. This includes a deep understanding of the
concept of Java 2 Enterprise Edition and Enterprise JavaBeans, and of how the EJB
products JOnAS and the servlets container Enhydra can support Wireless application in
OpenUSS’s system. This requires skills in programming Wireless Markup Language
and Java for the servlets. Therefore, the abilities of Enhydra for wireless application
were investigated.

Wireless-Devices
with KVM/CLDC and

MIDP (J2ME)

Enhydra-kXML

Wireless Devices with
WAP Browser

Enhydra/Enhydra
Enterprise-Server

(J2SE/J2EE)

Enhydra XMLC, Kelp

Figure 14

Figure 14 explains following types of wireless application provided by the Enhydra
platform:

• Wireless application that holds a WAP-Browser. This application is comparable
with the thin-client computer that is equipped with a Web-Browser. The application
will be accomplished only on a server. The result – in form of HTML pages – will
be given back to the client. Due to the small display of WAP devices a WML
presentation format will be used for the client, instead of HTML presentation
format. These WML-pages must be created on the server. In this case, Enhydra
demonstrated its excellence.

Enhydra provides the XMLCompiler that process diverse XML-derivatives such as
HTML and WML. This means that the creation of WML-pages is not complex.

• Local application for Wireless devices. This application is comparable with the fat-
client concept of a client/server technology. All the applications run locally and
primary offline on the wireless devices. For such application the wireless devices
must provide kVirtual Machine/Connected Limited Devices Configuration
(KVM/CLDC) and Mobile Information Device Profile (Java 2 Micro Edition)48.

48 CLDC is a specification that outlines the most basic set of libraries and Java Virtual Machine features
that must be present in each implementation of a J2ME. KVM is a Java virtual machine, which is
specifically designed for resource-constraint consumer devices. It is included in the CLDC reference
implementation. < http://java.sun.com/products/cldc/faqs.html#2>

Mobile Software Development for an Open Source E-Learning Platform

38

To enable the implementation, OpenUSS system was installed. This includes JOnAS
that acts as a Enterprise JavaBeans container and Enhydra as a servlet container. Those
are Java environment programs that mean that any operating system can be chosen as
long as it supports Java Virtual Machine. This means that Java Development Kit (JDK)
must be installed first. OpenUSS distribution already includes and installs all the
components, which are needed, automatically. This means: JOnAS, Enhydra and
HypersonicSQL are included within OpenUSS distribution, no need to download them
separately.

To provide the Data Layer, HypersonicSQL is installed automatically when
downloading OpenUSS. It is used as a default database for testing purposes. OpenUSS
allows using other databases, which have to be customised with OpenUSS by the
developer manually. In this case, I choose to use the convenience that OpenUSS offers.

For running business objects in the Business Objects Layer, JOnAS version 2.4.4 is
installed and for the Presentation Layer, Enhydra 3.1 is installed.

Since OpenUSS uses JOnAS, of OpenUSS breaks the application up into three
categories of objects: presentation objects, business objects, and data objects.

Presentation objects handle how the application data is presented to the clients (Web or
WAP browsers). Any and all HTML/WML is kept in the presentation objects. Data
objects get and set the data that application manipulates, from a file or a database. All
database code, or file reading code, is kept in the data objects. Business objects handle
all the "business logic". That is all the policy decisions, algorithms and data
manipulation. Essentially everything left over after the entire HTML and WML to the
presentation objects, and all the database/file access code to the data objects are
quarantined49.

Figure 15 shows the OpenUSS multi-tier architecture using JOnAS and Enhydra50.

49 http://enhydra.enhydra.org/software/documentation/EnhydraApp.html
50 http://openuss.sourceforge.net/openuss/developer/groups/architecture/architecture.html

Mobile Software Development for an Open Source E-Learning Platform

39

Figure 15

As mentioned in the previous Chapter, Enhydra has features like Servlets and XMLC.
This means Enhydra also support a fully functional WML Data Type Definition. Thus,
WAP application with complete dynamic functionality in WML and Java can be
written.

Principally, there are three steps to engender dynamic WAP application, they can be
describe as follow:

1. The definition of the dynamic WML-Components: Here XMLC provides the ID
property in the tags. In the example below (FacultyList.wml) we have five ids:
FacultyList, FacultyListPElement, FacultyListAElement,
FacultyListMorePElement, and FacultyListMoreAElement. The first id is not
interesting for our purpose since it is a basic unit of WML. It is the card that
specifies a single interaction between the user and the user agent. Multiple cards are
grouped together in decks.

Mobile Software Development for an Open Source E-Learning Platform

40

A deck is the topmost element of a WML document. When the user agent receives a
deck (by downloading the complete deck), it activates only the first card in the deck.
Our example only shows a sample WML document with a single card. This <card>
element contains a title attribute, which the browser will display for the card. The
<p> tag delimits a paragraph and must be used to wrap any displayed text. It also
allows to control the layout of text with its align attribute. The <a> tag is used to
link a text and is specified in the href attribute. In this example, any Faculty has a
link to its news. The ids with the <a> tag will be evaluated all the time and will be
substitute through recent datas such as Computer Science, Electronic Engineering
for FacultyList. A more button is added to show the lists that more than five.
Following is the template for FacultyList:

<?xml version="1.0"?>
<!DOCTYPE wml
 PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"
 "http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>

 <template>
 <do type="options" label="Back">
 <prev />
 </do>
 </template>

 <card id="FacultyList" title="Faculties">
 <p id="FacultyListPElement" align='left'>
 Institute
for

Economic and Social Science
 </p>
 <p id="FacultyListMorePElement" align='right'>

more..
 </p>
 </card>

</wml>

WML is based on XML. Therefore, a deck has to be a valid XML document, which
implies that a WML document (as the one shown above) should start with the
standard XML header and the reference to the WML DTD (Data Type Definition).

2. Enhydra then uses its supplied XMLC program to parse and compile the pages into
properly formatted XMLC classes. As a result, a Java-DOM-Class
FacultyListWML.java is created. As mentioned above, DOM allows access to XML
files so that the XML Compiler will also allow for presentation objects to serve
dynamic content XML. It is used to provide access methods to read and modify the
content. In order for the engineer to alter the dynamic content of a page, id and class
attributes are added as dynamic tags. The attributes, content, and nested tags can
then be replaced or removed by the Java program.

 Figure 16 below shows how the Enhydra XMLC works:

Mobile Software Development for an Open Source E-Learning Platform

41

Figure 16

3. Corresponding Java classes (servlets) must be created for each WML page that will
be shown on the WAP devices. This will load up the XMLC classes, does whatever
dynamic stuff you tell it to do, and with a call to the function to serve up the page.
Enhydra presents the page as [page name].po in the browser, which stands for
Presentation Object. To the user, it looks just like standard WML. The servlet of the
“Faculty List” (FacultyListPage.java) can be seen as follow:

 public class FacultyListPage extends FoundationWapPO {

 // Constants
 private static String FACULTY_LIST_PAGE = "FacultyListPage.po";
 private static String FACULTY_NEWS = "FacultyNewsPage.po";

By implementing the method below, no more than five lists of faculties will be
shown. If there are more than five faculties, a „more…“ button will appear to show
the rest of the lists:

 private static String START_INDEX = "StartIndex";
 private static String COUNT = "Count";
 private static int LIST_AMOUNT = 5;

Mobile Software Development for an Open Source E-Learning Platform

42

The code below uses the convenience methods generated by XMLC, such as
getElementFacultyList, to access the table cell in the DOM tree.

// Work through the faculty table and change the content in this
// table
// Create the WML template references and always remove the
templates

 WMLCardElement facultyListCard =
welcomePage.getElementFacultyList();

 WMLPElement facultyListP =
welcomePage.getElementFacultyListPElement();

 WMLAElement facultyListA =
welcomePage.getElementFacultyListAElement();

 // Remove...
 facultyListP.removeChild(facultyListA);

Another important issue is showing all faculties that exist. All the lists of faculties is
invoke by implementing following methods:

 // Show all faculties already exist.
private void showActiveFaculties(Object page) throws
HttpPresentationException {

 FacultyListWML welcomePage = (FacultyListWML)page;

The Vector acts similar like an array, with the findActiveFaculties() method all
active faculties from business layer of EJB will be retrieve:

// Get collection of faculties
 FacultyHelperObject facultyHelper = home.create();

Vector facultyList =
facultyHelper.findActiveFaculties(startIndex, count);

 Iterator facultyIterator = facultyList.iterator();

Using the while loop, the wml template will be inserted with the real data, which is
taken by the EJB server. Working with wml template is the same as with working as
DOM XML parser:

 // And loop through collection
 while (facultyIterator.hasNext()) {
 // Get the current faculty
 currentFaculty = (Faculty)facultyIterator.next();
 // Deep copy of AElement, not shallow
 WMLAElement copy = (WMLAElement)facultyListA.cloneNode(true);
 // Set the link for the news
 copy.setHref(FACULTY_NEWS + "?FacultyId=" +

currentFaculty.getId());
 copy.setId("link" + currentFaculty.getId());
 copy.getFirstChild().setNodeValue(currentFaculty.getName());
 // Now add this to our list of links
 facultyListP.appendChild(copy);
 // Now create a
 tag and append it after the link
 facultyListP.appendChild(welcomePage.createElement("br"));
 }

Subsequently, the JOnAS server and the Enhydra server can be started. The access can
be made in the WAP-browser simulator to http://localhost:9005. Note that the first time
an Enhydra application is called, it takes a while for it to come up (a minute or so).
After that it is fast.

The following screenshots shows (Figure 17) that the same information on the HTML-
Web browser with the WAP browser:

Mobile Software Development for an Open Source E-Learning Platform

43

Figure 17

Mobile Software Development for an Open Source E-Learning Platform

44

Another issue that is important is to present an image on WAP. Unfortunately, the only
graphic file format that is currently supported by the WAP Forum is the wireless bitmap
(WBMP) format. It is simply a one-bitmapped image.

A converter is needed to convert a BMP image to a WBMP image. An online converter
was used where can be found at http://www.teraflops.com/wbmp/. The converting
process is fairly straightforward. The image file can be inserted in within the <p> tag. In
the WelcomeWap.wml for example:

…

<card id="WelcomeList" title="Welcome">

 <p align='center'>
 </p>
 <p>

…

The original OpenUSS logo with the one shown the simulator screenshot
using Siemens S45 can be compared in Figure 18:

Figure 18

Mobile Software Development for an Open Source E-Learning Platform

45

4.5 Testing and Evaluation

To prevent bugs and system failures, in-depth tests and thorough evaluations have to be
carried out. This involves the entire software development PROCESS - monitoring and
improving the process, making sure that the requirement standards in the requirement
analysis meet their need, and ensuring that problems are found and dealt with. In
anticipation of the limited time and resources given, testing was carried out during the
entire implementation phase. The following problems and appropriate solutions were
found:

• Problem: The first simulator version from Phone.com, UP.SDK 4.0 was used. This
caused an abrupt system crash of my computer for no apparent reason. This
simulator provided different types of phones such as Motorola and Alcatel handsets.
When the device configuration was changed, e.g. from Motorola to Alcatel, the
application stopped running and sometimes crashed the whole system. This was
very annoying because I had to reboot the whole system.

Solution: I downloaded a recent version of the Openwave development kits
(Openwave version 5.1). This included a phone simulator (built on the same
browser code that is embedded into commercially shipping phones such as Siemens
S45), WAP gateway simulation (that uses the same code as it found at the operator
sites), and debugging tools. The 55,5 MB development kits can be installed without
problems. It integrated itself automatically when it was installed in the same
classpath as Java, JOnAS and Enhydra. In this case, I installed all of them on my
hard drive.

Since WAP gateway simulation is provided, a WAP gateway is not needed in this
test. All Openwave SDKs have two modes of operation51:

1. HTTP Direct, which simulates the WAP gateway; and

2. A gateway or proxy mode that connects the SDK to the content site via a real
WAP gateway.

• Problem: Because the WAP Browser from Openwave 5.1 accepts only a maximum
of 1500 to 2000 bytes per deck, it can last over 10 seconds. Unlike Web users that
can browse into other windows while waiting for a page that takes a long time,
wireless devices prohibit users from performing other tasks on the device while
waiting for content to load. The perceived network latencies can vary.

Solution: To keep the application moving smoothly, each deck should be kept as
small as possible. The recommended guideline is 500 bytes or less per deck
(encoded WML)52. Testing on the Openwave 5.1 simulator enable me to use the
Phone Siemens S45. In the real world, this device supports GPRS, which means that
the WAP access is truly faster. Furthermore Siemens S45 has 48 kBytes of memory.

• Problem: Starting the Openwave 5.1 program. Because I use AOL as Internet
Service Provider, the connections in the Internet Properties in the control panel are
set automatically to “Always dial my default connection”. Every time the simulator
is started, AOL is launched automatically. This occurs even when connecting to the
localhost http://www.localhost:9005.

51 http://www.openwave.com/products/developer_products/sdk/sdk_faq.html
52 Forte, et al, 2000.

Mobile Software Development for an Open Source E-Learning Platform

46

Solution: Every time before I start the simulator, I have to set up the connections in
the Internet Properties in control panel as “never dial a connection”.

Bugs: virus-checker programs can affect SDK performance. Fortunately, the anti-
virus program in my computer does not affect the performance of ths system.

• Problem: Using <go> task to navigate to a card that is already on the history stack.
This task returned to the subscriber homepage such as http://openwave.com.

Solution: Use the <prev> task to navigate the backward direction. Most of the
WML files in this system use following command:

 <template>
 <do type="options" label="Back">
 <prev />
 </do>
 </template>

Furthermore, there is an option to configure the homepage of the device
(http://localhost:9005) that allows the phone to directly apply to the application
servers by using the HTTP direct.

• This problem and solution is recommended from the Openwave.com: “When
content server updates the value of a cookie, SDK still transmits the previous value
in the HTTP cookie header. In direct mode, the workaround is to reload the device
after the value of the cookie has been updated, which will force the SDK to use the
updated value of the cookie. Another workaround is to cause the content server to
set the new value of the cookie twice. Since the SDK always uses the previous value
of a cookie after it has been updated, updating the value of the cookie twice (with
the same values) will cause the SDK to use the correct value”48.

The link to the “Faculty List” works well. A more…-button provided when the list is
more than five items. The selection of users and the login function work well. Access to
the information demanded can be done easily. Back-button is provided on each page,
even on the Login Page, depending on the devices, there is an edit button. To get back
more quickly from the Login Page (if user avoids editing), a back button is also
provided.

Testing whether both presentations (HTML and WAP) work simultaneously, both
localhosts (http://localhost:9000 for HTML and http://localhost:9005) for WML have to
be run together. The information changed on HTML such as adding or deleting news,
can be seen on the WAP-Simulator straight away with one condition: a new session has
to be started.

Mr. Dewanto, the developer of OpenUSS, put my WAP implementation on the server of
OpenUSS for testing purposes with the URL: http://pcwi505.uni-muenster.de:9021/.
One can test it with a simulator from the Internet that support cookies or with a WAP
phone without the http://. As a result, it works really well. The GUI depends on the
WAP-devices. Everybody who tested the system was amazed. It looks simple and
efficient.

Mobile Software Development for an Open Source E-Learning Platform

47

5 Future Development

From the discussion in system testing and evaluation, it has been shown that the system
has to some extent fulfilled the user and system requirements and has therefore achieved
our objectives. However, future improvements can be made to enhance the usability and
functionality of the system:

• Implement a discussion page so that the user can see what has been discussed in the
forum. This has not been made because of:

I. the extension foundation feature of OpenUSS system that require more
than writing a servlet i.e. change the business logic.

II. the limited time given for this project.

• Although it is unlikely that one student will take more than ten subjects in one
semester, it could be useful to implement a ‘more...’ button in the subject list both
for student and assistant. This is due to the OpenUSS system that needs to extend its
Business Logic in the Business Layer. As state previously, this project only deals
with the Presentation Layer so that the Business Layer is fall out of the theme.

• Implement a direct button to go back to the main menu. This could be unnecessary,
because by doing this the user will log off i.e. the main page consists of ‘Faculty
List’, ‘Lecturer Login’, and ‘Student Login’. It could be necessary if the user wants
enter the ‘Faculty List’ directly from the main menu.

6 Conclusion

Although there are critical issues concerning WAP, special attention must be paid to the
limitation of the devices. There has been a lot of effort put into the development of
mobile devices. When I went to the world's leading trade show for IT,
telecommunications & networks CeBIT in Hannover (Germany) this year, it showed
lots of development in this area. For example the astonishing Pocket PC with Personal
Digital Assistance functions, mobile Internet and GPRS, all in one. Or a Motorola
UMTS handset prototype with colour display. With GPRS and UMTS technology,
speed, stability, and display quality of WAP devices can be expected to improve.
Without doubt, the improved technology of the WAP bearer services (GPRS, UMTS)
will make WAP far more attractive.

This system makes full use of Open Source software. Together, JOnAs, Enhydra, and
Openwave 5.1 represent a complete recipe for the success of OpenUSS-mobile
development.

Finally, I believe that “Mobile Software Development for an Open Source E-Learning
Platform” is an open, strategic, long-term software solution, and therefore will easily
achieve widespread acceptance in the e-learning environment.

Mobile Software Development for an Open Source E-Learning Platform

48

Bibliography

• BENNET, S., Skelton, J., Lunn, K. Schaum’s Outlines of UML, 2001.

• Bensberg, F., Dewanto, L.: Open Source Java-Enterprise: Plattformen, Mediatoren
und Communities. Java Magazin (4.2001), P. 74-80.

• Bensberg, F., Dewanto, L.: Seeotter triff Pinguin! Ein Überblick über die Enhydra-
Plattform. Linux Enterprise (7.2001), P. 46-50. . (in German – Translation of title in
English “An Overview about Enhydra”)

• Bensberg, F., Dewanto, L: Und wo bleiben die Gewinne? – Open-Source-Software:
Wirtschaftliche Aspekte unter der Lupe. Java Magazin (4.2001), P 82-85 (in
German – Translation of title in English “ And where is the profit left?”)

• BIGELOW, K. and Beaulieu, M. Lutris Ltd. Wap vs. i-mode vs J2ME Programming
Paradigms and Limitations [online]. Available from World Wide Web:
http://www.sdc.sun.com/briefings/pdf_files/
KeithBuildingMultichannelApplicationswithXMLandJ2ME.pdf

• Communications International. Riding the third wave – Japan has already found out
how to make 3G work. Can Europe? February 2002

• DEITEL, H.M., Deitel, P.J.: JAVA HOW TO PROGRAM, Fourth Edition, 2002.

• DEWANTO, Lofi. Developer’s Manual OpenUSS OpenUSS-university support
system, 2000 [online]. Available from World Wide Web:
<http://sourceforge.net/projects/openuss/>

• Glahn, Kay: WAP ist ein Prozess. Ein Gespräch mit Scott Goldman, CEO WAP
Forum Ltd. Java Magazin (11.2001), P. 12-16 (in German – Translation of title in
English “WAP is a process”)

• Glahn, Kay: UMTS, WAP und Co: Technologien für das mobile Internet. Java
Magazin (3, 2001), P 55-59 (in German – Translation of title in English: “UMTS,
WAP and Co: Technologies for mobile Internet”)

• Glahn, Kay: WAP ist langweilig. Interview mit Curtis Sasaki, Director of
Technology Advocacy bei Sun. Java Magazin (9.2001), P. 18-20 (in German –
Translation of title in English: “WAP is boring”)

• FIELDEN, T, Orubeondo, A., J2ME and WAP: Together forever? [online]. World
Wide Web <http://www.javaworld.com>

• FORTA, B., Lauver, K., Fonte, P., Juncker, R.M., Mandel, R., Bromby, D.,
WAPDevelopment woth WML and WMLScript. The Authoritative Solution, 2000.

• Haiges, Sven: GeWAPnet. Java-Architecture eines modernen WAP-Services. Java
Magazin (9.2001), P 69-72

• ROMAN, Ed, Ambler, S.W, Jewell, T., Mastering Enterprise JavaBeans, Second
Edition, 2002.

• ROMAN, Ed, Mastering Enterprise JavaBeans and the Java 2 Platform Enterprise
Edition, 1999. Book on CD-ROM

Mobile Software Development for an Open Source E-Learning Platform

49

• SAVARESE, Daniel F.: The Great Migration. Java Pro, September 2001. P.20-21,
P.88-89

• SUN Microsystems, Inc. Simplified Guide to the Java 2 Platform, Enterprise
Edition [online]. Available from World Wide Web <http://java.sun.com>

• PEARCE, James: WAP for web developers. (Part 2). February 2000 [online].
Available from World Wide Web
<http://www.anywhereyougo.com/Content.po?name=wap/Fivesteps>

• POUNTAIN, D., Montgomery, J.: Web Components, August 1997, P.56-68.

• PRESSMAN, Roger S., adapted by Darrel Ince, Software Engineering – A
Practitioner’s Approach – European Adaptation, Fifth Edition, 2000.

• WAP-Forum. Available from World Wide Web: <http://www.wapforum.org>:

- Releases WAP 2.0 Specification For Public Review [online], 1st August 2001

- WAP 2.0 Technical White Paper [online].

- GOLDMAN, Scott. CEO WAP Forum. Status of WAP [online].Sydney, 15th

May 2001

- GOLDMAN, Scott. CEO WAP Forum. The Future of WAP [online] London
May 2001

• WITT, Martin, GPRS Start in die mobile Zukunft (GPRS-Start in the mobile future),
2000. (in German – Translation of title in English “GPRS-Start in the mobile
future”)

• WOOD, David. Java Application Servers, 1997 [online]. Available from World
Wide Web:
<http://www.pisoftware.com/publications/JavaColumn/appservers.9902.html>

• WOFFENDEN, Claire. iMode to merge with Wap, say pundits, 2000[online] .
Availabe on Web <http://www.computing.co.uk/News/1106079>

• WML versus cHTML [online]. Available from World Wide Web
<http://www.netlight.se/imodevswap.html>

• http://www.opensource.org

• http://www.openuss.sourceforge.net

• http://www.objectweb.org

• http://www.perens.com/Articles/OSD.html

• http://www.enhydra.org

• http://www.gnu.org

• http://java.sun.com

• http://www.trolltech.com

• http://www.kde.org

• http://www.umtsforum.org

Mobile Software Development for an Open Source E-Learning Platform

50

• http://www.openwave.com

• http://www.eplus-imode.de/1/de/html/pub/presse/index.html

• http://www.openuss.org

• http://www.handytel.com

• http://www.javamobiles.com

• http://netlight.se

• http://www.cellular-news.com

• http://www.mech.soton.ac.uk

• http://www.cs.waikato.ac.nz

• http://news.bbc.co.uk

• http://java.unidata.ucar.edu

• http://www.mobilinkgsm.com/wap

• http://www.webtechniques.com

• http://www.provu.co.uk

